
R E S E A R CH A R T I C L E

Deep transfer learning of structural magnetic resonance
imaging fused with blood parameters improves brain age
prediction

Bingyu Ren1 | Yingtong Wu2 | Liumei Huang1 | Zhiguo Zhang3 |

Bingsheng Huang2,4 | Huajie Zhang1 | Jinting Ma2 | Bing Li2 | Xukun Liu1 |

Guangyao Wu5 | Jian Zhang4,6 | Liming Shen1 | Qiong Liu1,4,7 | Jiazuan Ni1

1Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China

2Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China

3MIND Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China

4Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China

5Radiology Department, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China

6Health Science Center, Shenzhen University, Shenzhen, China

7Shenzhen Bay Laboratory, Shenzhen, China

Correspondence

Guangyao Wu, Radiology department,

Shenzhen University General Hospital and

Shenzhen University Clinical Medical

Academy, Shenzhen University, Shenzhen

518060, China.

Email: wuguangy2002@163.com

Jian Zhang and Qiong Liu, Shenzhen-Hong

Kong Institute of Brain Science-Shenzhen

Fundamental Research Institutions, Shenzhen

518055, China.

Email: jzhanghappy@szu.edu.cn (J. Z.) and

liuqiong@szu.edu.cn (Q. L.)

Funding information

Guangdong Provincial Key S&T Program,

Grant/Award Number: 2018B030336001;

National Natural Science Foundation of China,

Grant/Award Number: 21877081; Nature

Science Foundation of Shenzhen, Grant/Award

Number: JCYJ20200109114014533; Science,

Technology and Innovation Commission of

Shenzhen Municipality, Grant/Award Number:

JCYJ20200109110001818; Shenzhen-Hong

Kong Institute of Brain Science-Shenzhen

Fundamental Research Institutions, Grant/

Award Number: 2021SHIBS0003; SZU Top

Ranking Project, Shenzhen University, Grant/

Award Number: 860/000002100108; Action

Abstract

Machine learning has been applied to neuroimaging data for estimating brain age and

capturing early cognitive impairment in neurodegenerative diseases. Blood parame-

ters like neurofilament light chain are associated with aging. In order to improve brain

age predictive accuracy, we constructed a model based on both brain structural mag-

netic resonance imaging (sMRI) and blood parameters. Healthy subjects (n = 93;

37 males; aged 50–85 years) were recruited. A deep learning network was firstly pre-

trained on a large set of MRI scans (n = 1,481; 659 males; aged 50–85 years) down-

loaded from multiple open-source datasets, to provide weights on our recruited

dataset. Evaluating the network on the recruited dataset resulted in mean absolute

error (MAE) of 4.91 years and a high correlation (r = .67, p <.001) against chronologi-

cal age. The sMRI data were then combined with five blood biochemical indicators

including GLU, TG, TC, ApoA1 and ApoB, and 9 dementia-associated biomarkers

including ApoE genotype, HCY, NFL, TREM2, Aβ40, Aβ42, T-tau, TIMP1, and VLDLR

to construct a bilinear fusion model, which achieved a more accurate prediction of

brain age (MAE, 3.96 years; r = .76, p <.001). Notably, the fusion model achieved bet-

ter improvement in the group of older subjects (70–85 years). Extracted attention

maps of the network showed that amygdala, pallidum, and olfactory were effective

for age estimation. Mediation analysis further showed that brain structural features
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and blood parameters provided independent and significant impact. The constructed

age prediction model may have promising potential in evaluation of brain health

based on MRI and blood parameters.
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1 | INTRODUCTION

Numerous studies have demonstrated that the morphology of human

brain changes during aging process (Oschwald et al., 2019). Further-

more, neurodegenerative diseases, such as Alzheimer's disease (AD),

have been reported to show accelerated brain aging and atrophy

(Gellersen et al., 2017). Higher predicted brain age has been found to

be associated with many neuropsychiatric disorders, including not

only neurodegeneration such as mild cognitive impairment (MCI) and

AD, but also traumatic brain injury, schizophrenia, epilepsy, and

Down's syndrome (Cole & Franke, 2017). The “age gap” between the

predicted brain age and the chronological age is considered as a

potential biomarker for evaluating brain health (Bashyam et al., 2020).

The structural magnetic resonance imaging (sMRI) scans provide

anatomical information of the brain regions, thus capturing the age-

related brain changes (Grajauskas et al., 2019). Brain age prediction

models based on sMRI and machine learning show promising prospects

in studying brain aging and identifying early-stage neurodegeneration

(Sajedi & Pardakhti, 2019). In order to further improve the age predictive

accuracy, fusion of multimodal information has been regarded as a

promising strategy. Previous attempts mainly focused on the combina-

tion of imaging data in different sequences, for instance, sMRI, diffusion

MRI, and functional MRI (Liem et al., 2017; Niu, Zhang, Kounios, &

Liang, 2020; Rokicki et al., 2021). However, brain age and the rate of

cognitive decline in middle-to-old-age population are not only related to

their brain structure, but also to factors like neurochemical parameters

that cannot be obtained from neuroimaging directly (Habes et al., 2021).

Meanwhile, a key observation in neuroimaging-based brain age predic-

tion is that the predicted age is higher than the chronological age for

younger subjects and lower for older subjects (Feng, Lipton, Yang,

Small, & Provenzano, 2020; Sagers, Melas-Kyriazi, Patel, &

Manrai, 2020). One possibility is that human heterogeneity arose from

genetic differences or subtle effects of the environment, such as a brain

injury or cerebral infection, leads to changes in brain structure (Cole &

Franke, 2017).

To adjust the brain age error caused by nonaging-related changes

in brain structure, blood parameters may be a solution. Blood bio-

chemical indicators and dementia-associated biomarkers extracted

from blood are reported to change with aging. Biochemical indicators

like the total cholesterol (TC) and triglycerides (TG) have been shown

to change with aging (Kreisberg & Kasim, 1987), while the decline in

renal functions, nutritional deficiencies and deficiencies of

homocysteine (HCY) remethylation cause elevation of HCY with

advancing age (Ostrakhovitch & Tabibzadeh, 2019). Also, several

reports have discovered positive correlations between chronological

age and the dementia-associated biomarkers including plasma T-tau

(Nakamura et al., 2018), amyloid-beta (Aβ) 42 levels (Lue et al., 2019),

and neurofilament light chain (NFL; Khalil et al., 2020).

Recently, there has been an emerging trend to integrate imaging

and biomarker data. The blood biochemical indicators and dementia-

associated biomarkers are easily-obtained circulating markers that repre-

sent the health state of the whole body, including the brain. Ly

et al. (2020) tried combining amyloid status with sMRI to improve brain

age prediction. They pointed out that if amyloid was not taken into con-

sideration, it might lead to a bias in predicting brain age. But given the

diversity of potential biomarkers associated with aging or neurodegener-

ative diseases, it was not comprehensive to consider amyloid only.

In this work, we aimed to construct a brain age prediction model

applicable in the Chinese elderly population, and hypothesized that

sMRI and the blood parameters provide nonoverlapping information

which can improve predictive accuracy in brain age prediction. Age-

appropriate healthy participants were recruited and their brain sMRI

and 14 blood parameters were collected. To be specific, blood param-

eters are five clinically feasible biochemical indicators including glu-

cose (GLU), TG, TC, apolipoprotein A1 (ApoA1), and apolipoprotein B

(ApoB), and nine dementia biomarkers that represent the subjects'

brain health states including ApoE genotype, HCY, NFL, Triggering

Receptor Expressed on Myeloid cells 2 (TREM2), Aβ40, Aβ42, T-tau,

Tissue Inhibitor of Metalloproteinases 1 (TIMP1), and Very Low Den-

sity Lipoprotein Receptor (VLDLR). A model was pretrained on a large

public dataset of brain sMRI and was applied to our recruited dataset

by using deep transfer learning. Then the recruited subjects' sMRI and

blood parameters data were incorporated by using a multimodal linear

fusion approach for better predictive performance. The interpretabil-

ity of multiple features was described by attention maps, mediation

analysis and principal component analysis (PCA).

2 | MATERIALS AND METHODS

2.1 | Participants

Thirty-seven male and fifty-six female Chinese volunteers (over

50 years old) were recruited from Shenzhen University General
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Hospital. All participants were mentally healthy individuals. The

experiments were performed with the written informed consent of

all participants. This retrospective study protocol was approved by

the Institutional Review Board of Shenzhen University General Hos-

pital. The procedures conducted in this study were adherent to the

principles of the Declaration of Helsinki. Interviews of medical his-

tory were conducted, to rule out cases of traumatic brain injuries

and clinically diagnosed neurological disease. The Mini-Mental State

Examination (MMSE) and Montreal Cognitive Assessment (MoCA)

Tests were applied to assess the cognitive state of the participants

after blood glucose tests and collection of their blood samples. The

whole dataset contained 93 subjects from which 16 were excluded

due to the following reasons: (1) six were excluded because they

had infective hepatitis, contraindications to MRI such as metallic

implants, or claustrophobia. Their MRI scans or blood parameters

cannot be obtained, (2) seven were excluded because they suffered

from neurological disorders or had structural lesions, (3) three were

excluded because their MMSE and MoCA scores were both below

25 (Nair, Ramaswamy, Kan, & Nair, 2019; Versijpt et al., 2017).

Patients with neurological diseases including Parkinson's disease,

AD and MCI, and patients with cerebellar atrophy, intracranial hem-

orrhage and cerebral infarction, were all defined as having structural

brain lesions.

2.2 | Data acquisition and preprocessing

2.2.1 | Data acquisition

The sMRI scans were performed on a 3T MRI scanner (Discovery

MR750, GE Healthcare, Milwaukee, WI) with an eight-channel phased

array head and neck coil. A high-resolution three-dimensional

T1-weighted structural imaging was performed by using a brain volume

(BRAVO) sequence with the following parameters: repetition time

(TR) = 6.7 ms; echo time (TE) = 2.9 ms; flip angle = 12�; acquisition

matrix = 256 � 256; bandwidth = 31.25; number of excitations = 1

and slice thickness = 1 mm with a 0-mm gap; total slices = 180.

The sMRI data for pretraining the deep learning network were

collected from three public databases including Alzheimer's Disease

Neuroimaging Initiative (ADNI), Information eXtraction from Images

(IXI), and the Open Access Series of Imaging Studies (OASIS). The sub-

jects we collected were between 50 and 85 years of age and cogni-

tively normal. The detailed information of the downloaded dataset

and our recruited dataset was provided in Tables 1 and 2. See

Figure S2 for open-source dataset selection strategies.

The blood GLU levels of all participants were tested by a glucose

meter (Roche, Switzerland) in the morning between 8 a.m. and 9 a.m.

after an overnight fast for 10 hr. Then, blood samples (5 ml) were col-

lected in EDTA-coated tubes while the participants were still in the

fasting state, and processed as quickly as feasible (within approxi-

mately 3 hr). Plasma was prepared by centrifuging samples for 10 min

at 2200 g. The supernatant was aliquoted and stored at �80�C. Sam-

ples were only thawed immediately prior to analysis.

The plasma biochemical indicators including TG, TC, ApoA1,

ApoB, and HCY were detected by an automatic biochemical analyzer

(ICUBIO iMagic-M7, Shenzhen, China) with the corresponding kits.

The potential dementia biomarkers including TREM2, TIMP1, and

VLDLR were detected by microplate reader (BioTek-800TS, USA)

using commercially available enzyme-linked immunosorbent assay

(ELISA) kits (Cloud Clone: SEG628Hu and SEA552Hu; Senbeijia bio-

logical technology: SBJ-H1100) following the manufacturer's

instructions.

The NFL levels in the plasma were measured by LabEx (Univ-bio,

Shanghai, China) using a Meso Scale Discovery (MSD)

electrochemiluminescence method with the corresponding kit (F217X,

MSD). Plasma concentrations of Aβ1-40, Aβ1-42, and T-tau were deter-

mined by G-BIO (G-BIO Biotech, Hangzhou, China) using a single mole-

cule array (Simoa) method with the corresponding Neurology 3-Plex A

kit (N3PA, Quanterix). The APOE genotype was determined by

sequencing (WeGene, Shenzhen, China) for SNPs rs7412 and rs429358.

TABLE 1 Group demographics of our recruited subjects

50–60 60–70 70–85 Group comparison Post hoc

n 33 30 14 N/A N/A

Sex 20 females, 13 males 18 females, 12 males 9 females, 5 males χ2 = 0.078,

p = 0.962a
N/A

MMSE score 28.9 ± 1.2

(26–30)
28.7 ± 1.3

(26–30)
28.0 ± 1.4

(25–30)
F = 2.102, p = .129b 50–60 vs. 60–70, p >.999

50–60 vs. 70–85, p = .133

60–70 vs. 70–85, p = .404

MoCA-B

score

28.0 ± 2.1

(20–30)
26.8 ± 1.9

(20–29)
26.0 ± 3.1

(18–30)
F = 3.248, p = .045b 50–60 vs. 60–70, p = .124

50–60 vs. 70–85, p = .106

60–70 vs. 70–85, p >.999

APOE ε4
carrier

9 carriers, 24

noncarriers

3 carriers, 27

noncarriers

0 carriers, 14

noncarriers

χ2 = 6.723,

*p = .035a
N/A

Note: The MMSE and MoCA-B scores were given as mean ± standard deviation (range).
aChi-squared test.
bOne-way ANOVA.
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The gender and APOE genotype of test subjects after exclusion

(n = 77) were compared among different age groups using chi-squared

test. For other demographics values and blood parameters, we per-

formed ANCOVAs with sex and the presence of an APOE ε4 allele

included as covariates according to former studies, as APOE and sex

have been reported to have effects on some of the dementia bio-

markers (Sampedro, Vilaplana, Leon, Alcolea, & Fortea, 2015; Startin,

Ashton, Hamburg, Hithersay, & Strdom, 2019). Blood parameters were

log-transformed prior to ANCOVAs. The η2 values resulted in

ANCOVAs determined the overall effect size of different age groups. If

sex and the presence of an APOE ε4 allele showed no confounding

effects to certain parameter, then one-way ANOVA with Bonferroni

post-hoc pairwise comparisons were applied. Otherwise post-hoc test

in each ANCOVA was applied. *p <.05, **p <.01, and ***p <.001 were

considered as statistically significant. For correlation analyses between

age and each blood parameter, Spearman's rank correlational analysis

(Sedgwick, 2014) was used if one of the parameters was not normally

distributed, otherwise Pearson's correlation analysis was used. Aβ and

T-tau are proteins that aggregate in the patient's brain with neurode-

generative disease. The ratio of Aβ42 to Aβ40 (Aβ40/42) and the ratio

of Aβ42 to T-tau (Aβ42/T-tau) in cerebrospinal fluid have been widely

accepted as biomarkers of depositions in the brain and early-stage

dementia (Koyama et al., 2012; Park et al., 2019). Thus, they were

included in the correlation analyses aswell. The heatmaps of correlation

analyseswere generated using the TBtools software (Chen et al., 2020).

2.2.2 | Data preprocessing

Image preprocessing was carried out using a computational anatomy

toolbox 12 (CAT12) (http://dbm.neuro.uni-jena.de/cat12/). The

voxel-based morphometry (VBM) Method Flow in CAT12 was shown

in Figure S3. We chose initial voxel-based processing and refined

voxel-based processing to obtain the gray matter maps. T1-weighted

images were all firstly inhomogeneity corrected. The skull and other

nonbrain elements were then removed. The images were registered

into the standard MNI space using the deformable registration algo-

rithm DARTEL57. An MNI-registered image, and the images of gray

matter were generated with voxel size 1.5 mm3 and matrix of

121 � 145 � 121. The gray matter image of each subject was used to

construct the deep learning model.

Z-score normalization was performed on the blood parameters.

2.3 | Deep transfer learning model

First, we used the public dataset to train the convolutional neural

network (CNN) model as a pretrained network model. It was used

as a starting point to fine-tune the network with our recruited

dataset. Second, we froze the model weights of the convolutional

layers so that only the fully connected layers were trainable. This

strategy allowed us to train a stable model with less time and data.

Then, the MRI features were extracted for subsequent bilinear

fusion.

Our deep-learning-based brain age prediction approach was

motivated by a pioneering work (Jonsson et al., 2019), which dem-

onstrated that a CNN model trained on MRI scans of healthy

elders can achieve high predictive accuracy. A full description of

the applied CNN model was presented in Figure 1. It was

implemented using Keras with TensorFlow as backend and con-

sisted of five residual blocks, each followed by a max pooling layer

of stride 2 � 2 � 2 and kernel size 3 � 3 � 3. The convolutional

part of the CNN reduced the input image from size

121 � 145 � 121–128 feature maps of size 4 � 5 � 4. Detailed

graphical presentation of the network architecture can be found in

Figure S1. We flattened the output from the last convolutional

layer and fed it into a fully connected layer which reduced these

feature maps down to a feature vector of 256 dimensions. The

predicted age was obtained by using the last fully connected layer,

which mapped the feature vector to a single output value. The

algorithm was optimized by using Adam algorithm with mean abso-

lute error (MAE) loss function and with following parameters:

learning rate = 0.0001, decay = 10�6, β1 = 0.9, β2 = 0.999, and

batch size = 4.

The public dataset was randomly divided into the training

(60%), validation (20%), and test (20%) sets. The pretrained net-

work model was built on the training split and the best model

was selected based on its performance on the validation set.

After the pretrained weights were loaded by deep transfer learn-

ing, five-fold cross validation was conducted to evaluate the

prediction performance of CNN model based on our recruited

dataset.

The prediction performance of each model was evaluated using

MAE and correlation analysis between the predicted brain age and

the chronological age. The rules of correlation analysis were the same

as mentioned above in Section 2.2.

TABLE 2 Group demographics of the subjects downloaded from the public dataset

50–60 60–70 70–80 80–85 Group comparison

ADNI 0 84 441 158 N/A

IXI 99 118 49 6 N/A

OASIS 150 376 0 0 N/A

Total 249 578 490 164 N/A

Sex 150 (60.2%) females,

99 (39.7%) males

317 (54.8%) females,

261 (45.1%) males

265 (54.0%) females,

225 (45.9%) males

90 (54.8%) females,

74 (45.1%) males

χ2 = 2.792

p = .425a

aChi-squared test.
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2.4 | Bilinear fusion model

2.4.1 | Bilinear fusion model

To achieve effective fusion of image features and blood parameters,

we found inspiration in the Visual Question Answering tasks (Cadene,

Ben-Younes, Cord, & Thome, 2019). Multimodal bilinear fusion strate-

gies have been recently proposed (Fukui et al., 2016; Yu, Yu, Xiang,

Fan, & Tao, 2018) to concatenate the visual and textual representa-

tions. Multimodal compact bilinear (MCB) pooling, as a key compo-

nent in bilinear fusion method, is to obtain a joint representation and

calculates the outer product between two vectors. It allows for multi-

plicative interactions between all elements of both vectors. An MCB

model is implemented by projecting the multimodal features to a

higher dimensional space and then convolving both vectors efficiently

by using an element-wise product in Fast Fourier Transform space. In

our fusion prediction model, the image features (256 features per sub-

ject) and the blood parameters (14 features per subject) were used as

inputs while the predicted brain age was derived from a fully con-

nected layer at the end of the bilinear fusion model.

2.4.2 | Performance comparison with the deep
transfer learning model without fusion

The support vector regression (SVR; Drucker, Burges, Kaufman,

Smola, & Vapnik, 1996), as a typical machine learning method, was

used to build the brain age prediction model based exclusively on

blood parameters. SVR aims to construct a linear spacer band in high-

dimensional space based on the training sample set. It counts the dis-

tance from the out-of-spacer sample to the spacer band into the loss

function, and optimizes the model by minimizing the width of the

spacer band and the total loss. The radial basis function kernel was

used in this study, which transformed the low-dimensional linear

inseparable original features into higher dimensional spaces, making

them linearly separable. This enabled the model to fit nonlinear rela-

tionships between multiple blood parameters and age. For the hyper-

parameters ε and C, we adopted the parameter optimization to

discover the optimal hyperparameter automatically. To avoid different

models used for the prediction could be a potential confounding

effect when comparing the performance between using single modal

features or using fusion. We also applied another three different

regressors, namely, linear regression, random forest regressor, and

Lasso regressor, to compare the regression performance. The linear

regression was taken from the fully connected layer without an acti-

vation function in the CNN. We utilized univariate linear regression

tests for feature selection. The cross-validation strategy was the same

as that described above for CNN model.

Permutation test was used to investigate whether the perfor-

mance of the fusion model was statistically significantly improved

compared with those before fusion. The test was performed between:

(1) the model trained on MRI before fusion versus the fusion model,

and (2) the model trained on blood parameters before fusion versus

the fusion model. For both models, we calculated the errors between

F IGURE 1 Schematic network architecture and workflow of bilinear fusion. Two hundred fifty-six-dimensional features were extracted from
brain images through a ResNet network. All MaxPooling layers were designed as stride 2 � 2 � 2 and kernel size 3 � 3 � 3. Imaging features and
blood parameters were fused in the Multimodal Compact Bilinear Fusion module. The entire process can be completed by an end-to-end cascade
network
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the chronological ages and the predicted ages, and obtained two sets

of errors. We first calculated the mean values of the two sets, and

obtained the true difference of the two mean values. These two sets

of error values were then combined into one set and randomly divided

equally into two groups, and the difference of the two mean values

was calculated as well. We permutated for 999 times and plotted the

distribution of the 1,000 (999 fake difference and the true difference)

values to test if the true difference was within top 5% (p <.05), which

indicated that the improvement of fusion model was statistically sig-

nificant. We completed this permutation test based on the R-package

(https://www.r-project.org/).

To explore the improvement of predictive accuracy after the

fusion with blood parameters among different age groups, we evalu-

ated MAE and reduction of MAE. Reduction of MAE was calculated

by the formula below:

Reduction ofMAE %ð Þ¼MAEbefore�MAEafter

MAEbefore
�100%

Variances of predictive error were calculated separately for differ-

ent age groups to measure the degree of dispersion of predictive errors.

2.5 | Feature interpretability analysis

Brain regions visualization and mediation analysis were used to

explore the interpretability of the features extracted from the CNN

model. Gradient-weighted Class Activation Mapping (Grad-CAM)

method (Selvaraju et al., 2017) was used to extract the attention map

showing which brain areas contribute significantly to age prediction.

The attention maps from all samples were averaged, resulting in an

average attention map. Anatomical automatic labeling (AAL) atlas

(Tzourio-Mazoyer et al., 2002) was superimposed on the average

attention map and obtained voxel values from the total 90 regions

indicated in AAL. We calculated the sum of voxel values as well as the

number of voxels in each region, and their ratio (sum of voxel values/

number of voxels) was identified as importance score (Wang

et al., 2019). We did not consider the difference between the left and

right brain, so the average number of importance scores in the same

brain region located in different hemibrains was taken as the impor-

tance score for that brain region. Forty-five importance scores were

finally obtained. Furthermore, we normalized the minimum to maxi-

mum values of importance score to range from 0 to 1. The importance

score of the top 8 brain regions accounted for more than 40% of the

importance score for all brain regions. Therefore, only the top 8 brain

regions with the highest importance score were involved in subse-

quent analyses. Brain anatomical features can be divided into features

of subcortical and cortical regions. There were five subcortical regions

and three cortical regions in the top 8 brain regions. The FreeSurfer

software (https://surfer.nmr.mgh.harvard.edu/fswiki/) package was

used to estimate the volume of subcortical regions. The surface area

and gray matter volume (GMV) of cortical regions were estimated by

FreeSurfer as well. Eleven features were included in the brain

anatomical features of each subject. The correlation analyses between

age-related blood parameters and brain anatomical features were con-

ducted by using the same method as mentioned above in Section 2.2.

The features which were not significantly associated with chronologi-

cal age were excluded in this analysis.

To explore whether there were interactions between brain ana-

tomical features and chronological age or blood parameters and chro-

nological age, mediation analyses (Imai, Keele, & Tingley, 2010) were

applied to these variables that were found to have significant linear

relationships with age. The first step was to test whether blood param-

eters mediate the relationship between brain anatomical features and

age. We screened variables from brain anatomy features by linear

regression model. Age was used as the dependent variable in linear

regression model, only those features whose regression coefficients

were statistically significant (p <.05) were selected (n = Nscreen). For

mediators, that is, blood parameters, no screening was performed

(n = 13). Next, we explored the mediating effects by using R-package.

A total of 13 � Nscreen analyses were performed. The second step was

to test whether brain anatomical features mediate the relationship

between blood parameters and age. Compared to the first step, the

roles of brain anatomical features (n = 11) and blood parameters were

interchanged. The screening rules for blood parameters (n = N0
screen)

and mediation analyses for each variable were the same as above. A

total of 11 � N0
screen analyses were performed. Total, direct, and medi-

ation effects were analyzed by using 1,000 bootstraps with bias-

corrected 95% CI. We used the Benjamini–Hochberg method to cor-

rect for multiple comparisons in mediation analyses (Benjamini &

Hochberg, 2000).

Further, we performed PCA to explore which blood parameters

influence brain age prediction most. PCA is a dimension-reducing

method that creates a new coordinate space according to variance and

singular value decomposition algorithm (Ringnér, 2008). PCA can pro-

jects high-dimensional data into low-dimensional space while

maintaining its principal components. PCA steps were performed using

sklearn toolkit in Python 3.6 (https://www.python.org/). Specifically, we

stitched the matrix of image feature and the blood parameters to obtain

a 270-dimensional feature matrix. Z-score standardization was per-

formed in each feature. The first two principal components with the

largest variance were selected to set a coordinate space. Then the

270-dimensional features were projected into the coordinate space and

obtained their new feature values in the first two principal components.

3 | RESULTS

3.1 | Demographic information

The characteristics of the recruited subjects were described in

Table 1. The recruited dataset consisted of 77 (47 females/30 males)

cognitively normal elderly individuals from Chinese population after

exclusion. Their ages ranged from 50 to 85 years with a mean value of

62.1 and standard deviation (SD) of 8.6 years. The recruited subjects

were divided into three groups by age: the 50–60 group, the 60–70
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group and the 70–85 group. One-way ANOVA and post-hoc analyses

were performed to compare the MMSE and MoCA-B scores in these

groups, and no statistically significant difference was found.

Description of the sMRI datasets derived from public databases

was given in Table 2. In total, the public dataset consisted of 1,481

(822 females/659 males) cognitively normal elderly individuals. Their

ages ranged from 50 to 85 years with a mean age of 68.0 and SD of

8.6 years.

3.2 | Correlations between blood parameters and
chronological age

The median values and ranges of the blood parameters in each group of

our subjects were listed in Table S1. One-way ANOVA and post-hoc

analyses were performed to compare the group difference. The levels of

GLU were significantly higher for the 70–85 group compared to the

50–60 group or the 60–70 group. The HCY levels showed significant

differences between the 50–60 and 60–70 groups, and between the

50–60 and 70–85 groups. The concentrations of NFL showed signifi-

cant differences in each group. The plasma Aβ40 level was significantly

higher in the 60–70 group compared to the 50–60 group.

The results of normality test were listed in Table S1. There were

three parameters, Aβ40, Aβ42, and T-tau that conformed to the nor-

mal distribution while others were non-normal. In addition, chronolog-

ical ages of recruited subjects were not normally distributed

(p = .023), so Spearman's rank correlation analyses were performed to

determine the correlation between age and blood parameters.

The results of correlation analyses were provided in Table S2. As

shown in the heatmap (Figure 2), only the correlations with statistical

significance (p <.05) were labeled with circle nodes. Significant posi-

tive correlations were found between: GLU and TC, GLU and HCY,

Aβ42/ T-tau and TG, ApoB and TC, Aβ40 and NFL, Aβ42 and Aβ40, T-

tau and Aβ40, TIMP1 and Aβ40, T-tau and Aβ42, Aβ42 and Aβ42/40,

Aβ42/40 and Aβ42/T-tau. Significant negative correlations were

found between: ApoA1 and TG, Aβ42 and TREM2, Aβ42/40 and

TREM2, Aβ42/T-tau and TREM2, Aβ42/40 and Aβ40, Aβ42/T-tau

and Aβ40, Aβ42/T-tau and T-tau, TIMP1 and Aβ42/40.

Notably, we identified significant positive correlations between chro-

nological age and blood parameters of ApoA1, NFL, Aβ40, and negative

correlations between chronological age and blood parameters of

Aβ42/40, VLDLR. The results of the correlation analyses revealed the

potential of blood data for age estimation. Scatterplots were shown in

Figure 3 to present the distribution of these blood biochemical indicators

over chronological age. We performed outlier detection and found that

excluding the outliers did not change the significance of the correlation.

3.3 | Brain age prediction performance of the deep
transfer learning model

Performance of our trained deep learning model on the test set

(n = 297) from public dataset showed an MAE value of 2.65 years

(Figure 4a). The age distribution of the test set did not conform to a

normal distribution (p = .004). Spearman's rank correlation analyses

were performed and found a good correlation (r = .91, p <.001)

F IGURE 2 Correlations
between concentrations of blood
parameters and chronological
age. The squares colored with
gradient color from red to blue
were for Spearman's rank
correlation coefficients, and circle
nodes with light brown to dark
brown were for p value with
significance. GMV, gray matter
volume
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between chronological age and predicted brain age. The pretrained

model weights were then loaded into the CNN and fine-tuned with

our recruited subjects. The performance measured on the recruited

dataset showed an MAE of 4.91 years (Figure 4b) with a relatively

high Spearman's rank correlation (r = .67, p <.001). For comparison,

the deep learning model trained on our recruited dataset without pre-

trained weights showed an MAE of 6.03 years with a Spearman's rank

correlation coefficient of .42 (p <.001).

3.4 | Brain age prediction performance of the
fusion model

As shown in Figure 4c, the multimodal bilinear fusion of both brain

MRI and blood parameters resulted in a better prediction performance

(MAE, 3.96 years; r = .76, p <.001). In addition, the fusion model

showed a significantly lower MAE in predicting brain age than the

MAE of model trained on sMRI only after a permutation test

(p = .048). The SVR model based exclusively on blood parameters

achieved a worse performance (MAE, 5.81 years; r = .53, p <.001)

than the fusion model. The permutation test of the SVR model versus

the fusion model also indicated a significant improvement in the

fusion model (p = .002). The scatterplot was shown in Figure 4d and

these results can be found in Table 3. Among all, the bilinear fusion

model showed the highest prediction performance on our recruited

dataset. The results of different models used for the prediction using

single modal features or using fusion were listed in Table 4. The

experimental results showed that predictive accuracy of fusion model

with different regression methods was generally better than that of

the model trained on single modal features. It can be concluded that

the improvement of predictive accuracy was due to multimodal fea-

tures rather than different regressors.

As listed in Table 5, improved performance was shown in all three

age groups. Among these three groups, the 70–85 age group showed

the best improvement after incorporating the blood parameters. As

shown in Figure 5, the mean prediction error of the fusion model,

compared with the model before fusion, was significantly lower in the

70–85 age group.

3.5 | Feature interpretability analyses

3.5.1 | Visualization of important brain regions in
age prediction

As shown in Figure 6, the attention map highlighted the areas that

were effective for age estimation, which mainly included brain struc-

tures that belong to the limbic system and basal ganglia. The top

8 anatomical regions that contributed to the age prediction were

listed in Table 6. Amygdala was the region with the highest contribu-

tion. The 45 anatomical regions in AAL ranked by the importance

score were listed in Table S3.

As shown in the heatmap (Figure 7), a significant positive correla-

tion was found between VLDLR and parahippocampus GMV, while

F IGURE 3 Scatterplots of age-associated blood parameters over chronological age. The concentrations of (a) ApoA1, (b) NFL, (c) Aβ 40, (d) Aβ
42/40, (e) VLDLR. Outliers are denoted by hollow circles. (r = Spearman's rank correlation coefficient, p = two-sided p value)
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significant negative correlations were found between ApoA1 and pal-

lidum volume, NFL and pallidum volume, NFL and putamen volume,

NFL and hippocampus volume, NFL and parahippocampus GMV. The

results of the correlation analyses were provided in Table S4. Further-

more, the correlations between different brain anatomical features

revealed a complex interplay between the brain regions.

3.5.2 | Mediation analysis between brain MRI
features and blood parameters

As shown in Figure 8a, in most cases, the brain anatomical features

showed direct effects on age. Meanwhile, four partial mediation

effects were identified. To be specific, TIMP1 partially mediated

TABLE 3 Age predictive accuracy

Dataset Features Method MAE (years)
Spearman's rank
correlational analysis

Public data (N = 1,481) MRI only Deep learning 2.65 r = .91

p <.001

Recruited subjects' data (N = 77) MRI only Deep learning 6.03 r = .42

p <.001

Recruited subjects' data (N = 77) MRI only Transfer learning and deep

learning

4.91 r = .67

p <.001

Recruited subjects' data (N = 77) Blood parameters only Support vector regression 5.81 r = .53

p <.001

Recruited subjects' data (N = 77) Bilinear fusion of MRI and

blood parameters

Bilinear fusion with linear

regression

3.96 r = .76

p <.001

F IGURE 4 Accuracy of brain
age prediction models.
Scatterplot of chronological age
(x-axis) and predicted age (y-axis)
from (a) deep learning model
trained on sMRI from the public
dataset, (b) transfer learning
model trained on sMRI from the
recruited subjects' dataset,

(c) bilinear fusion model trained
on sMRI and blood parameters
from the recruited subjects'
dataset, (d) SVR model trained on
blood parameters from the
recruited subjects' dataset. Blue
circles represent the subjects,
and the dashed red line
represents the perfect
prediction. The model
performance, including MAE
(years) and results of correlation
analysis were provided on the
left corner of each plot
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between olfactory GMV and chronological age. NFL partially medi-

ated between putamen volume, thalamus volume and chronological

age. Aβ40 partially mediated between thalamus volume and chrono-

logical age. Figure 8b showed that the ApoA1, NFL, and Aβ40 directly

affected age in most cases. Besides, pallidum volume and thalamus

volume partially mediated between ApoA1 and age. Pallidum volume,

putamen volume, hippocampus volume, and thalamus volume partially

mediated between NFL and age.

3.5.3 | Main factors of blood parameters for brain
age determined by PCA

The results of PCA revealed that image features scores on principal

components were higher than blood parameters, but the direction of

features on principal component was different between image fea-

tures and blood parameters. According to Figure 9, ApoE allele, lipid

parameters (including ApoB and TC) and VRDLR had high scores on

the second principal component. They showed different sizes and dif-

ferent directions vectors in the coordinate space formed by the first

two principal components. This further illustrated that their potential

information was different. In contrast, NFL, which had the highest

correlation with image features, had similar components to image fea-

tures groups on principal direction.

4 | DISCUSSION

To the best of our knowledge, this is the first study to demonstrate that

integration of blood parameters and brain sMRI data yields higher brain

age predictive accuracy in elderly population. Subsequent analyses con-

firmed the improvement by bilinear fusion for different age groups. Fea-

ture interpretability analyses showed important brain regions that

contribute to the prediction. Direct and indirect effects between blood

parameters, anatomical features and age had been discovered.

4.1 | Deep transfer learning improves brain age
prediction

One possible limitation in constructing the brain age prediction model

is the small sample size. Therefore, we applied the deep transfer learn-

ing method in our study. The model was pretrained with available data

from public dataset, and then it was applied to our recruited dataset.

TABLE 4 Prediction performance of different regressors on different modal features

Features Feature extraction Features shape Regressors MAE (years)

Spearman's rank

correlational analysis

MRI only ResNet 256 � 1 Linear 4.91 .67

ResNet 256 � 1 Support vector 5.49 .61

ResNet 256 � 1 Random forest 4.88 .69

ResNet 256 � 1 Lasso 5.12 .65

Blood parameters only None 14 � 1 Linear 5.90 .53

None 14 � 1 Support vector 5.81 .54

None 14 � 1 Random forest 5.60 .57

None 14 � 1 Lasso 6.10 .50

Bilinear fusion of MRI and

blood parameters

ResNet + MCB 14 � 1 Linear 3.96 .76

ResNet + MCB 14 � 1 Support vector 4.60 .74

ResNet + MCB 14 � 1 Random forest 4.76 .72

ResNet + MCB 14 � 1 Lasso 4.64 .71

Note: Bold values signifies that p-value is <.001

TABLE 5 Predictive accuracy in different age groups

Age group Features
Variance of
predictive error (years)

Mean absolute
error (MAE, years) Reduction of MAE (%)

50–60 (N = 33) MRI only 11.40 4.03 —

Bilinear fusion of MRI and blood parameters 6.30 3.63 9.77

60–70 (N = 30) MRI only 14.00 4.83 —

Bilinear fusion of MRI and blood parameters 9.78 3.93 18.62

70–85 (N = 14) MRI only 16.59 7.14 —

Bilinear fusion of MRI and blood parameters 12.48 4.78 33.00
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The deep transfer learning obviously improved the model perfor-

mance on our recruited dataset. Our pretraining model using the same

method achieved higher accuracy than the published model (ages 19–

75) (Jonsson et al., 2019), which might be due to a more specific age

range (ages 50–85) that we were targeting. A hypothesis of transfer

learning is that a CNN which already proficient at one site only needs

a small adjustment to adapt data from a new site. The CNN trained on

larger datasets can extract rich and effective brain structural features

that may be common among different sites. The heterogeneity inher-

ent in different sites can be adapted with small adjustments, so that

the CNN can train on small datasets more quickly and stably. Still, fur-

ther confirmation is required on larger datasets with a wider age range

for the multimodal fusion model based on brain MRI and blood

parameters.

F IGURE 5 Distribution of age prediction error in different age
groups. Each step colored in orange (before fusion) or blue (after
fusion) line indicated the mean error in that age group. The gray
dashed line indicates the zero-error reference

F IGURE 6 Effective brain
regions for contributing the age
prediction. Grad-CAM attention
map overlaid on a brain template
from coronal plane, sagittal plane,
and transverse plane. Areas
highlighted with gradient color
from yellow to red showed the
effective brain regions for age
prediction

TABLE 6 Top 8 anatomical brain regions ranked by the
importance in the age prediction model

Brain region Size (voxels) Importance (normalized)

Amygdala 948 1.00

Pallidum 1,291 0.99

Olfactory 1,245 0.93

Putamen 3,984 0.92

Hippocampus 4,081 0.89

Thalamus 4,374 0.87

Fusiform 11,463 0.85

Parahippocampus 5,387 0.85
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A kind of explanation about CNN model validity investigated in our

work was to highlight the brain regions that contribute to age predic-

tion. In accordance with a former report based on MRI data only, the

brain regions, including amygdala, hippocampus and thalamus were rela-

tively effective for age prediction (Wang et al., 2019) and their morpho-

metric changes were often detected during aging process (Oschwald

et al., 2019). These three brain regions are key components of the brain

limbic system, which are responsible for behavioral and emotional

responses, and consolidating memories. Relationships between cogni-

tive impairment and atrophy of these brain regions have been reported,

even before diagnoses (Štěpán-Buksakowska et al., 2014; Wachinger,

Salat, Weiner, & Reuter, 2016). This might be an explanation why the

age gaps between the predicted brain age and the chronological age

were reported to be greater in cases with higher dementia risk (Cole &

Franke, 2017). Also, pallidum and putamen that belong to the brain basal

ganglia were identified in our report, suggesting a possible application of

our model in screening neuronal disorders with mobility dysfunction

such as Huntington and Parkinson's disease.

4.2 | Fusion with blood parameters further
improves brain age prediction

Since blood biochemical indicators and dementia-associated bio-

markers are also linked to one's brain aging and health state, data from

blood parameters also contribute to the brain age prediction. Indeed,

the SVR model generated using blood parameters obtained a reliable

performance. Furthermore, the model fused with blood and sMRI data

achieved higher predictive accuracy than model based solely on sMRI,

and performed as well as the model from former reports (Franke &

Gaser, 2019; Jonsson et al., 2019).

It was noteworthy that the improvement was more effective in

elder age group. One of the most likely reasons is that the blood bio-

chemical indicators and dementia-associated biomarkers we selected

were to evaluate the whole-body and brain health status of the rec-

ruited subjects. Five biochemical indicators including GLU, TG, TC,

ApoA1, and ApoB were measured to evaluate the glucose and lipid

metabolism of the subjects. Other seven blood parameters are poten-

tial risk factors or biomarkers of cognitive impairment (Fitz et al.,

2015; Li & Mielke, 2019; Liu et al., 2018; Mattsson, Cullen,

Andreasson, Zetterberg, & Blennow, 2019; Smith & Refsum, 2016;

Yao et al., 2018). These blood parameters were more closely associ-

ated with brain aging at older ages.

The linear relationship between brain age and chronological

age in healthy people have been observed in many studies

(Bashyam et al., 2020; Cole, 2020; Feng et al., 2020). However,

some studies also reported a nonlinear relationship between brain

age and chronological age (Niu et al., 2020), in which the brain age

tended to be underestimated for older subjects and overestimated

for younger ones. Such systematic bias may arise from regression

toward the mean (Le et al., 2018; Liang, Zhang, & Niu, 2019) or

from the non-Gaussian distribution of subjects' age (Smith,

F IGURE 7 Correlation
between age-related brain region
features and blood parameters.
The squares colored with
gradient color from red to blue
were for correlation coefficients,
and circle nodes with light brown
to dark brown were for p value
with significance. GMV, gray

matter volume
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Vidaurre, Alfaro-Almagro, Nichols, & Miller, 2019). Similarly, the

predicted brain age of 70–85 age group in our study was under-

estimated. Although our proposed fusion model successfully

reduced the underestimation in the 70–85 age group, further stud-

ies are required to better correct for the systematic bias in regres-

sion model.

F IGURE 8 Mediation analysis. (a) The ACE and ACME results of brain anatomical features on chronological age via blood parameters. (b) The
ADE and ACME results of blood parameters on age via brain anatomical features. ACME, average causal mediation effects; ADE, average direct
effects. The squares colored with gradient color from red to blue were for ADE or ACME values, and circle nodes with light brown to dark brown
were for p value with significance
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4.3 | Mediation analysis and PCA reveal that the
multimodal information are independent and
nonoverlapping

The cross-information benefits from multiple types of data help reveal

important links that cannot be detected by single-modality data. Since

the bilinear fusion model worked better than the sMRI model, blood

parameters and sMRI might be complementary to each other. In the

subsequent mediation analysis, we studied whether blood parameters

act as mediators that transmit the effect of brain features on chrono-

logical age, and whether brain anatomical features mediate the rela-

tionship between blood parameters and age. Some partial mediation

effects of the brain anatomical features and blood parameters on age

were identified. However, in most cases, they showed significant

direct effects on age instead of mediating effects. This indicated that

most information from blood parameters and brain sMRI does not

have causal pathways, either from blood parameters to brain sMRI

features to brain age, or from brain sMRI features to blood parameters

to brain age. Some blood parameters including GLU, TC, and TG are

sensitive indicators expressing various health states. For example,

inflammation and metabolic abnormalities have been successfully

used in age prediction tasks (Putin et al., 2016). For dementia bio-

markers such as Aβ and T-tau, previous studies demonstrated that in

the cerebrospinal fluid or blood they change far before the onset of

neurodegenerative symptoms, which may have not been detectable

by imaging method yet (Bateman, Xiong, Benzinger, Fagan, &

Goate, 2012). On the other hand, it is well-known that the brain

structural information obtained by brain images is rich and effective.

Accelerated atrophy in brain regions implies accelerated aging. This is

important information that cannot be captured from blood. Blood

parameters and brain sMRI features showed independent information

so that they can directly contribute to the performance of predicting

brain age respectively.

A similar conclusion can be drawn from PCA. The brain sMRI fea-

tures and most blood parameters showed components of different

sizes and orientations, revealing that their roles do not overlap. We

found that apolipoprotein E genotype and lipid parameters play

important roles in the prediction of brain age from PCA results. This is

reasonable because ApoB variants have been found to be directly

related to AD risk (Wingo et al., 2019), also to the degree of brain

aging. Meanwhile, higher levels of TC have been reported to be asso-

ciated with decreased cognitive performance in normal elderly adults

(Stough, Pipingas, Camfield, Nolidin, & Scholey, 2019). What is more,

there was a mutual influence between apolipoproteins and TC. It has

been found that aging-related processes can substantially impact the

role of lipid-related genes (including ApoB and ApoE allele) in regula-

tion of TC and onset of cardiovascular disease (Kulminski et al., 2013).

This indicates that apolipoproteins and TC can reflect the brain aging

through the blood circulation system.

We noticed that NFL and ApoA1 have a strong correlation with

some brain anatomical features while there were causal mediation

effects between them. This means that they provide duplicated informa-

tion in the brain age prediction, but it is indeed common in many stud-

ies. As a potential biomarker for neuronal axonal damage, the plasma

NFL was particularly prominent among all blood parameters in our

study. A strong positive correlation of NFL levels with age was found in

our recruited subjects, which was consistent with results from two other

studies on healthy participates in a similar age range (ages >50; Khalil

et al., 2020; Wagen et al., 2020). They also demonstrated that NFL

levels were inversely correlated with whole brain volume and positively

correlated with brain atrophy. In our study, the correlations between

NFL and typical brain regions were analyzed specifically, and NFL was

found to have significant negative correlations with the volume of palli-

dum, putamen, hippocampus, and parahippocampus. From results of

PCA, the proportion of NFL and Aβ40 in principal components were

similar to the proportion of image features. There are studies reporting

correlations between brain morphological changes and some of the bio-

markers that we used. For instance, NFL levels were inversely correlated

with whole brain volume (as we mentioned in the discussion); Aβ posi-

tivity was associated with smaller gray matter volumes (Mattsson

et al., 2015). Thus, NFL may provide repeated information during fusion

prediction, but this demonstrated the importance of NFL as an indicator

of brain health status assessment.

In this study, the information provided by blood parameters and

brain structural features were independent and nonoverlapping in

prediction tasks, which might be an explanation why the fusion of

brain sMRI and blood parameters enhanced the predictive accuracy of

our model.

Our work provides a clinically adaptable strategy for incorporat-

ing routinely available data from blood biochemical and MRI to assess

F IGURE 9 Principal component analysis (PCA). Biplot of the first
two principal components in the PCA, accounting for the greatest
variance, with blood parameters (including five blood biochemical
indicators and nine dementia-associated biomarkers) labeled. Arrows
showed the contribution of original variables to the principal
components
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accurate brain age. Besides, it has significant transformational poten-

tial beyond brain age prediction. The effective brain regions and the

blood parameters highlighted by our model suggest the prospect of

early screening across a spectrum of neurodegenerative diseases, such

as Huntington, Parkinson, and AD. It may be of interest in future stud-

ies to inspect whether the high-contributing features from the cur-

rently presented framework may change follow the

neurodegenerative disease progress. In such cases, our model can aid

in the noninvasive monitoring of disease development.

4.4 | Limitations

There may be some possible limitations in this study. First, the sample

size of recruited data was small. We thus applied deep transfer learn-

ing to lower the concern. Indeed, our model based on deep transfer

learning showed improved performance on brain age prediction. For

subsequent research and practical clinical application, future longitudi-

nal studies with a larger sample size are warranted to confirm these

findings. Correlation and mediation analyses helped to analyze the

relationship between different parameters and chronological age, but

the mechanism remains unclear.

5 | CONCLUSION

For the first time, we presented a brain age prediction model with

improved performance by deep transfer learning and multimodal

fusion of the data from brain sMRI and blood parameters in the Chi-

nese elderly. Compared with other models based solely on brain MRI

or blood parameters, the bilinear fusion model achieved the highest

accuracy in age prediction. The prediction performance of elderly age

group was significantly improved after the fusion of blood parameters.

The subsequent mediation analysis discovered direct effects of blood

parameters and anatomical features on age in most cases, supporting

our hypothesis that brain MRI and blood parameters provide non-

overlapping information which contributed to the performance of

fusion model. Our findings show promising potential to be applied in

evaluating brain health status for Chinese populations.
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